
Analysis of Agent-Based Systems

Using Decision Procedures
In Formal Approaches to Agent-Based Systems, Revised Papers, Edited by

J.L. Rash et al. Lecture Notes in Arti�cial Intelligence 1871, Springer,

Heidelberg, Germany, July 2001

Ramesh Bharadwaj

Naval Research Laboratory
Washington, DC 20375-5320
ramesh@itd.nrl.navy.mil

In recent years, model checking has emerged as a remarkably e�ective tech-
nique for the automated analysis of descriptions of hardware systems and com-
munication protocols. To analyze software system descriptions, however, a direct
application of model checking rarely succeeds [1, 3], since these descriptions often
have huge (often in�nite) state spaces which are not amenable to the �nite-state
methods of model checking. More important, the computation of a �xpoint (the
hallmark of the model checking approach) is not always needed in practice for
the veri�cation of an interesting class of properties, viz, properties that are in-
variantly true in all reachable states or transitions of the system. To establish a
property as an invariant, an induction proof, suitably augmented with automat-
ically generated lemmas, often su�ces.

Salsa is an invariant checker for speci�cations in SAL (the SCR Abstract
Language). To establish a formula as an invariant without any user guidance
Salsa carries out an induction proof that utilizes tightly integrated decision pro-
cedures, currently a combination of BDD algorithms and a constraint solver for
integer linear arithmetic, for discharging the veri�cation conditions. The user in-
terface of Salsa is designed to mimic the interfaces of model checkers; i.e., given
a formula and a system description, Salsa either establishes the formula as an
invariant of the system (but returns no proof) or provides a counterexample. In
either case, the algorithm will terminate. Unlike model checkers, Salsa returns a
state pair as a counterexample and not an execution sequence. Also, due to the
incompleteness of induction, users must validate the counterexamples. The use
of induction enables Salsa to combat the state explosion problem that plagues
model checkers { it can handle speci�cations whose state spaces are too large for
model checkers to analyze. Also, unlike general purpose theorem provers, Salsa
concentrates on a single task and gains e�ciency by employing a set of optimized
heuristics.

The design of Salsa was motivated by the need within the SCR Toolset [4]
for more automation during consistency checking and invariant checking [1, 3].
Salsa achieves complete automation of proofs by its reliance on decision proce-

dures, i.e., algorithms that establish the logical truth or falsity of formulae of
decidable sub-theories, such as the fragment of arithmetic involving only integer
linear constraints called Presburger arithmetic. Salsa's invariant checker con-
sists of a tightly integrated set of decision procedures, each optimized to work



within a particular domain. Currently, Salsa implements decision procedures for
propositional logic, the theory of unordered enumerations, and integer linear
arithmetic.

After some experimentation, we arrived at the following practical method
for checking state and transition invariants using Salsa (see Figure 1): Initially
apply Salsa. If Salsa returns yes then the property is an invariant of the system,
and we are done. If Salsa returns no, then we examine the counterexample to
determine whether the states corresponding to the counterexample are reachable
in the system. If so, the property is false and we are done. However, if one
concludes after this analysis that the counterexample states are unreachable,
then one looks for stronger invariants to prove the property. Salsa currently
includes a facility that allows users to include such auxiliary lemmas during
invariant checking. There are promising algorithms for automatically deducing
such invariants, although Salsa currently does not implement them.

S

I

Lemma L

SAL Specification

Potential Invariant

No/Counterexample

Yes

No Yes(Manually or with
 automatic generator)

Produce auxiliary

Is
Counterexample

Reachable?

I an invariant of Is S ?

Salsa

I=New I L

Fig. 1. Process for applying Salsa.

In my future work, I would like to focus on using Salsa technology for descrip-
tions of distributed and concurrent systems, most notably agent-based systems.
My hope is that my interactions with scientists and researchers from the for-
mal methods and agents based systems community will provide the necessary
impetus for this work to proceed. The First Goddard Workshop on Formal Ap-
proaches to Agent-Based Systems is an excellent forum for such interactions.

References

1. Ramesh Bharadwaj and Constance Heitmeyer. Model checking complete require-
ments speci�cations using abstraction. Automated Software Engineering, 6(1), Jan-
uary 1999.

2. Salsa: Combining constraint solvers with BDDs for automatic invariant check-
ing. In Proc. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS'2000), LNCS 1785, Springer-Verlag, March 2000.

3. C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj. Using abstraction
and model checking to detect safety violations in requirements speci�cations. IEEE
Trans. on Softw. Eng., 24(11), November 1998.

4. Constance Heitmeyer, James Kirby, Jr., Bruce Labaw, and Ramesh Bharadwaj.
SCR*: A toolset for specifying and analyzing software requirements. In Proc.
Computer-Aided Veri�cation, 10th Annual Conf. (CAV'98), Vancouver, Canada,
1998.


